The U-Battery, a Conceptual Design of a Natural Circulation Cooled Nuclear Battery for Process Heat Applications

International Conference on Non-Electric Applications of Nuclear Power 16-19 April 2007, Oarai, Japan

S.J. de Zwaan, <u>J.L. Kloosterman</u>, R.J. Linssen, T.H.J.J. van der Hagen, G.C. van Uitert <u>J.L.Kloosterman@tudelft.nl</u> www.janleenkloosterman.nl

Delft University of Technology

Introduction

The U-Battery is a very small reactor (20 MWt) for process heat applications with the following features:

- Inherently safe
- Self regulating (minimal control and maintenance)
- Natural Circulation Cooling
- High reliability and availability
- Burnup of at least 10% FIMA

Introduction Neutronic Feasibility Natural Circulation and Heat Transfer Conclusions

Department of Radiation, Radionuclides & Reactors (R³) Section Physics of Nuclear Reactors (PNR)

Design boundary conditions U-Battery

- To comply with non-proliferation treaties
 - Use of max. 20% enriched TRISO coated particle fuel
- To make road transport possible
 - A combined core and reflector diameter of less than 3.5 m
- To reduce neutron leakage
 - $H_{core} = 0.924 D_{core}$ (minimal buckling)
 - Prismatic core geometry
- To improve economics
 - Fuel cycle length of 5-10 yrs
 - Burnup of at least 10% FIMA

Parameter Study

Other U–Battery Parameters:

- Core Volume & Reflector Thickness
- Fuel enrichment (<20%)
- Coolant (liquid metal, liquid fluoride salt)
- Volume fractions

To assess the feasibility of the U-Battery, a parameter study was performed on:

- 1. Neutronics (burnup calculations and reactivity coefficients)
- 2. Natural circulation and heat transfer

Neutronic Feasibility

Burnup calculations were performed (using SCALE codes) for different cases during a desired fuel cycle length followed by a k_{eff} calculation at the end of the cycle (EOC).

If $k_{eff} < 1$ the design is not feasible.

Calculation methods:

		Basic calc. Het	Heterogeneous calc.		
Nr of fuel zones Neutron flux & Power profile		1	9 (cylindrical symmetric) zone and time dependent		
		Normalized z			
Nr of time steps in burnup calc.		c. 1	11		
troduction	Neutronic Feasibility	Natural Circulation and Heat Transfe	er Conclusions 5		
Departmen Section Phy	t of Radiation, Radionuclides & I ysics of Nuclear Reactors (PNR)	Reactors (R ³)			

Input parameters and Coolants

Input parameters for burn up and eigenvalue calculations

parameter	value
Core power	20 MWth
Fuel cycle length	5 & 10 yrs
FIMA	10, 12.5, 15 & 17.5 %
Fuel enrichment	12 – 20 %
Core volume	1-14 m ³
Reflector thickness	0 – 1.6 m
Uniform core temperature	1073 K
Coolant volume fractions	10 % (salts), 3.5 % (tin)

Liquid fluoride salts	Liquid metal	
Na-Be, Na-Zr,	tin	
⁷ Li-Na-Zr, ⁷ Li-Na-K,		
⁷ Li-Be		

ntroduction Neutronic Feasibility Natural Circulation and Heat Transfer

Department of Radiation, Radionuclides & Reactors (R³) Section Physics of Nuclear Reactors (PNR)

Results burnup and k_{eff} calculations

Core volume vs enrichment, ⁷Li-Be fluoride 5 yrs, refl = 1.2 m, cvf = 0.1

- On blue line k_{eff} at EOC = 1
- Larger core volume allows lower initial enrichment
- Area on upper right side provides k_{eff}
 > 1 at EOC
- Upper right side is feasible, lower left side not
- Minimal volume = 2 m³ (20 % enr)
 Minimal enrichment = 11.7 % (5 m³)
- For volumes larger than 5 m³ enrichment needs to increase
 - over moderation (C/U relation)
 - reduced effect of reflector

Introduction Neutronic Feasibility Natural Circulation and Heat Transfer Conclusions 7

Department of Radiation, Radionuclides & Reactors (R³) Section Physics of Nuclear Reactors (PNR)

Results burnup and k_{eff} calculations

Core volume vs. fuel enrichment, ⁷Li-Be fluoride and tin

- Tin coolant volume fraction 5% because with larger coolant fractions no feasible solutions were found
- Minimum fuel enrichment is much larger for tin than for ⁷Li-Be fluoride due to absorption

Core volume and reflector thickness Contour plot of diameter core and reflector combined

- When using slimmer reflectors, core volumes can be larger while the total diameter < 3.5 m
- Core and reflector combination should be below 3.5 m

Results ⁷Li-Be fluoride, 20% enr, 5yrs

Core volume and reflector thickness combinations to achieve $k_{eff} = 1$ at EOC

 When using larger core volumes, smaller reflectors are needed to give same k_{eff} with smaller total diameter

The solution must be found:

- Below the 3.5 diameter constraint
- Above the $k_{eff} = 1$ at EOC curve

 Introduction
 Neutronic Feasibility
 Natural Circulation and Heat Transfer
 Conclusions
 10

 Department of Radiation, Radionuclides & Reactors (R³)
Section Physics of Nuclear Reactors (PNR)
 Full
 Full
 Full

Results ⁷Li-Be fluoride, **5yrs**

Core volume and reflector thickness combinations to achieve $k_{eff} = 1$ at EOC

- Results of initial enrichments 20, 14 and 12 % are shown
- Effects C/U relation visible
- Calculations performed with basis method (black) and with heterogeneous method (red)
- Results heterogeneous method are less optimistic, because no effort was made to flatten the flux. The true curves will lay in between both methods
- The minimum applicable initial enrichment when using ⁷Li-Be as coolant is 14 % ²³⁵U

 Introduction
 Neutronic Feasibility
 Natural Circulation and Heat Transfer
 Conclusions
 11

 Department of Radiation, Radionuclides & Reactors (R³)
Section Physics of Nuclear Reactors (PNR)
 Example 1
 Full
 Full

Results tin, 5yrs

Core volume and reflector thickness combinations to achieve $k_{eff} = 1$ at EOC

- No feasible reflector and core volume combinations can be found with a tin coolant volume fraction of 5%
- Solutions can be found for a 3.5% coolant volume fraction
- The heterogeneous calculation (in red) confirms 3.5% result

Results all salts and tin, 10 years

Core volume and reflector thickness combinations to achieve $k_{eff} = 1$ at EOC

- For each coolant except ⁷Li-Na-K a wide range of reflector and core volume combinations can be found
- ⁷Li-Be provides largest range of solutions
- Na-Zr and Tin are also promising candidates due to absence of toxic Be and isotopic separation of ⁷Li

Introduction Neutronic Feasibility Natural Circulation and Heat Transfer Conclusions

Department of Radiation, Radionuclides & Reactors (R³) Section Physics of Nuclear Reactors (PNR)

Temperature and void coefficients

Results of uniform temperature and complete voiding reactivity coefficients calculated for ⁷Li-Be fluoride, Na-Zr fluoride and tin.

Coolant	Core volume	Core Coolant k, olume volume		uniform temperature coefficient (10 ⁻⁵ K ⁻¹)			Complete voiding	
	(m ³)	fraction		973-1073 K	1073-1173 K	Avg.	reactivity (\$)	
⁷ Li-Be fluoride	4	0.1	1.38	-7.07	-8.66	-7.86	-1.66	
Na-Zr Fluoride	6	0.1	1.39	-5.64	-4.66	-5.15	3.55	
tin	6	0.035	1.29	-3.84	-4.46	-4.16	12.0	

- All coolants will have negative uniform temperature coefficient ٠
- Only ⁷Li-Be has a negative complete voiding reactivity coefficient ٠
- If reactivity increases due to complete voiding is compensated by Doppler ٠ effect (~ -7 pcm/K) temperature must increase:
 - 400 K for Na-7r case
 - 1300 K for tin case

Natural Circulation and Heat Transfer Neutronic Feasibility 14 Department of Radiation, Radionuclides & Reactors (R³) Section Physics of Nuclear Reactors (PNR)

Conclusions Neutronics Feasibility

- ⁷Li-Be fluoride provides most design freedom for U-Battery.
- Na-Zr and tin are good alternatives due to lack of toxic Be and isotopical seperation of ⁷Li.
- All coolants have negative uniform temperature coefficient, only ⁷Li-Be fluoride also has negative complete voiding coefficient.
- Tin has large voiding reactivity, measures should be taken to prevent complete voiding at all times.

 Introduction
 Neutronic Feasibility
 Natural Circulation and Heat Transfer
 Conclusions
 15

 Department of Radiation, Radionuclides & Reactors (R³)
Section Physics of Nuclear Reactors (PNR)
 Full
 Full

Calculation Parameters

Fuel Temperatures and Reynolds numbers were calculated as a function of the height of the Primary System (riser + core)

Input parameters

Parameter	Value
Core Power (MWt)	20
Core volume (m ³)	6
Height heat exchanger (m)	Core height
Diameter coolant channel (m)	0.02
Diameter riser and down comer (m)	0.2
Coolant inlet temp (K)	973
System pressure (bar)	1

 Introduction
 Neutronic Feasibility
 Natural Circulation and Heat Transfer
 Conclusions
 16

 Department of Radiation, Radionuclides & Reactors (R³)
Section Physics of Nuclear Reactors (PNR)
 Full Circulation and Heat Transfer
 Conclusions
 16

Maximum fuel temperatures & Reynolds as a function of primary system height

- All coolants except provide fuel temperatures lower than 1200 °C for primary system heights larger than 7.5
- Only tin has Re>10,000 while ⁷Li-Be has Re<4000
- Large ΔT between coolant and graphite coolant wall for liquid salts
- Large temperature gradient in graphite for tin; increases thermal stresses in graphite

Modifying parameters improves thermal hydraulic performance

	old	new	old	new
Modified parameter	⁷ Li-Be fluoride	⁷ Li-Be fluoride	Na-Zr fluoride	Na-Zr fluoride
Diameter coolant channel (m)	0.02	0.03	0.02	0.03
Height primary system (m)	10	20	10	15
Coolant inlet temperature (K)	973	1073	973	1073
Core height (m) (abandon H=0.92D)	1.87	4	1.87	3
Modified Results	⁷ Li-Be	⁷ Li-Be	Na-Zr	Na-Zr
Reynolds number	2505	8940	4700	15600
Nusselt Number	11.0	66.0	24.4	116
Maximum fuel temperature (K) (1473 K allowed)	1356	1376	1367	1405

- Acceptable results can be found when modifying parameters
- Modifying the core shape will have negative effects on neutronics
- height of primary system could be limiting factor (now 20 m)

Conclusions Thermal Hydraulics

- Li-Be is not very good candidate for natural circulation cooling, due to low Reynolds numbers
- Na-Zr has better characteristics, but still modifications of primary system are needed for proper natural circulation
- Tin is an excellent coolant for natural circulation, large temperature drop in graphite can be a problem

Introduction Neutronic Feasibility Natural Circulation and Heat Transfer Conclusions 19

Department of Radiation, Radionuclides & Reactors (R³) Section Physics of Nuclear Reactors (PNR)

Overall Conclusions & Recommendations

Summary results

	⁷ Li-Be	Na-Zr	Tin
Neutronic properties	good	fair	poor
Neutronic design freedom	good	good	fair
Natural circulation potential	poor	fair	good

- Feasible core designs can be made for a liquid cooled U-Battery
- From neutronics point of view ⁷Li-Be fluoride is the best coolant, while from thermal hydraulics point of view, tin has largest potential.
- Future work will contain:
 - New material research, possibly there are better coolant candidates
 - Thermal hydraulics, burnup and shielding calculations
 - Passive reactivity control, using burnable poisons
 - Coupled neutronics and thermal hydraulics calculations to assess accident scenarios

